pcDuino V2

Thank you for purchasing your Single-Board Computer from LinkSprite. Please read this user's guide

before setting up and using your new Single-Board Computer.

Contents

Board Overview
System Features4
Single-Board Computer Configuration5
Pin Assignments7
Single-Board Computer Setup9
Required Hardware9
Optional Hardware9
Adjusting Screen Settings9
The Ubuntu Operating System10
Accessing the Debug Port10
Re-Installing the Operating System11
Glossary12
FCC Information15

Board Overview

You can use the Single-Board Computer with various open-source projects, but you can do much more. The Single-Board Computer features a fully functional operating system (OS) that can simultaneously run multiple processes, giving you a much more robust and versatile experience than a dedicated microprocessor board.

The Single-Board Computer provides several ports so you can quickly and easily set up a monitor, keyboard, and mouse to create a complete computing solution.

The HDMI port lets you connect to any HDTV or monitor with an HDMI port.

The **USB A** port lets you connect USB peripherals. For example, you can use a USB hub to connect a keyboard, mouse, and other USB devices. The **Micro USB** port provides additional connectivity.

The MicroSD slot provides an easy way to add additional memory (up to 32 GB).

Note: Your Single-Board Computer is shipped in protective anti-static packaging. The board must not be subjected to high electrostatic potentials. A grounding strap or similar protective device should be used when handling the board.

System Features		
System on a Chip (SoC)		All Winner A10
Central Processor (CPU)	1 GHz ARMv7 Cortex A8 Single Core
Graphics Processor (GPU)		Mali 400
SDRAM Memory		1 GB, DDR3-800
Flash Memory		2 GB NAND
Mass Storage	Max	32 GB
	Туре	MicroSDHC
Video Output		HDMI Up to 720p, 60 Hz
Network Interface		Ethernet 10/100M via RJ45
Wireless Connectivity		802.11b/g/n
Communications I/O		USB 2.0
Extension Interfaces		ADC, UART, GPIO, PWM, I ₂ C, SPI, Power
		(via Stackable 0.100" Connection Headers)
Operating System		Ubuntu

Single-Board Computer Configuration

Pin Assignments

GPIO8
GPIO9/PWM9
SPI_SS (Subordinate/Chip Select)/GPIO10/PWM10
SPI0_MOSI (Master Output, Subordinate Input)/GPIO11/PWM11
SPI0_MISO (Master Input, Subordinate Output)/GPI012
SPI0_CLK (Clock)/GPI013
GND
AREF
TWI2_SDA (Data)
TWI2_SCK (Clock)

J8

1	GPIO0/UART2 RX
2	GPIO1/UART2 TX
3	GPIO2
4	GPIO3/PWM3
5	GPIO4
6	GPIO 5/PWM5
7	GPIO 6/PWM6
8	GPIO7

P6

1	SPI1_MISO (Master Input, Subordinate Output)
2	+5 VDC
3	SPI1_CLK (Clock)
4	SPI1_MOSI (Master Output, Subordinate Input)
5	RESET
6	GND

J9 1 (NC) 2 IOREF 3 RESET 4 3.3 VDC output 5 5 VDC output 6 GND 7 GND 8 +5V_№

J12

J12	
1	A0
2	A1
3	A2
4	A3
5	A4
6	A5

P10

1	GPIO14
2	GPIO15
3	GPIO16
4	GPIO17

P3	(Debug Port)
1	TX (Square Pad)
2	GND
3	RX

Single-Board Computer Setup

Make USB and HDMI connections before connecting power to the Single-Board Computer. If the board

does not recognize your keyboard or mouse, unplug the device and plug it back in.

Note: To ensure that your Single-Board Computer boots properly, use a short, heavy-gauge USB cable

and a power supply that delivers at least 2 A.

Required Hardware

Optional Hardware

Monitor

MicroSD card for additional memory storage

- HDMI cable
- USB hub
- Keyboard/Mouse
- DC power (Micro USB)

Adjusting Screen Settings

In some cases, the Ubuntu desktop may extend beyond the visible area of your monitor.

To adjust the size of your desktop:

- 1. Open LX Terminal.
- 2. At the command prompt, type: sudo setwindow 95 1 0 0
- 3. Press Enter.

Note: The "95" parameter sets the percentage of screen size, and the "1" activates auto-center; the

remaining values are inactive for auto-center, but are still necessary for the command.12

The Ubuntu Operating System

Your Single-Board Computer is preloaded with the Ubuntu 12.07 operating system. Ubuntu is a robust,

Terminal	Run standard Linux commands	
	Launch GCC to open the C/C++ compiler	
File browser	Built-in file manager	
Internet browser	Chromium web browser	
	Support for HTML5	
Productivity Suite	Document Viewer for PDFs	
	Gnumeric for spreadsheets	
	AbiWord for documents.	

fully functional operating system that provides an open-source productivity suite.

If your system asks for an authentication password, the default password is "ubuntu."

For full support go to www.ubuntu.com

Accessing the Debug Port

If you are a more experienced user, you can communicate with the Single-Board Computer directly by

using a USB-to-Logic Level Serial cable to connect the board's debug port to your computer's USB drive.

- 1. Go to the Single-Board Computer website and install the drivers onto your PC.
- 2. Connect the debug cable to the USB port on your computer and to the board's debug port (P3). TX

connects to Pin 1, which has the square pad.

3. On your PC, locate the COM port. For help locating the COM port, refer to your operating system's

online help.

4. After you locate the COM port, access the serial communications package. Verify the following

settings:

• COM Port: 8,N,1

- Baud Rate (Speed): 115200
- · All Flow Controls: Off
- 5. You can now access the board's system level.

Re-Installing the Operating System

As you consider new projects, you may decide to restore your Single-Board Computer to its original state.

To accomplish this, you may need to re-install the operating system.

Note: Re-installing the Ubuntu operating system will erase all saved data from the Single-Board

Computer.

To install the operating system:

- 1. Disconnect the power to the Single-Board Computer.
- 2. Insert a MicroSD card that contains a Linux kernel image into the Single-Board Computer's MicroSD

card slot.

- 3. Restore power to the board and wait at least 2 minutes. During this time, the TX light blinks as the Single-Board Computer installs the Linux kernel.
- 4. When TX stops blinking, disconnect the power to the Single-Board Computer and remove the kernel image MicroSD card.

Note: The Single-Board Computer will always check for a kernel image when power is restored. Do not insert the kernel image SD card in the slot unless you intend to install the entire operating system and erase all data on the board.

5. Restore power to the board. The RX and TX lights will remain lit for a moment, and then the TX light will begin to blink slowly while the RX light remains lit.

- 6. Insert a MicroSD card that contains an Ubuntu image. The TX light will begin to blink rapidly. Do NOT remove the Ubuntu image MicroSD card during this process. After the TX light stops flashing rapidly, both the RX and TX lights will blink slowly. This indicates a good image load.
- 7. Disconnect power to the Single-Board Computer and then remove the Ubuntu image MicroSD card.

8. Restore power to the Single-Board Computer. The operating system will boot up properly, the desktop will appear on your monitor, and the board will be ready to use.

Glossary

ADC	Analog-digital converter	
CPU	Central processing unit	
DDR	Double Data Rate, Type 3. SDRAM configuration with high	
	bandwidth	
ESD	Electrostatic discharge	
Linux	An open source operating system	
GB	Gigabyte. Capacity in bytes. 1×10₀Bytes	
GHz	Gigahertz. Frequency in hertz. 1×10₅hertz	
GPIO	General purpose input/output. A digital port that can be selected	
	by the user to function as either an input or an output.	
GPU	Graphics processing unit	
НОМІ	High-Definition Multimedia Interface	
l2C	Inter-Integrated Circuit, generically referred to as "two-wire	
	interface" (TWI)	
I/O	Input/Output	

МВ	Megabyte. Capacity in bytes. 1×10₀ bytes	
Flash NAND Memory	Electronic non-volatile computer storage that can be electrically	
	erased and reprogrammed. NAND-type flash memory may be	
	written and read in blocks (or pages).	
PC	Personal computer	
PWM	Pulse-width modulation	
RoHS	Restriction of Hazardous Substances Directive (EU)	
SDHC	Secure Digital High-Capacity memory card	
SDRAM	Synchronous dynamic random access memory	
SoC	System on a chip	
SPI	Serial Peripheral Interface	
Ubuntu	An open source operating system	
UART	Universal Asynchronous Receiver/Transmitter. A serial	
	communication port.	
USB	Universal Serial Bus	
VDC	Volts of direct current	

FCC Information

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the F CC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- · Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

Consult your local RadioShack store or an experienced radio/TV technician for help.

If you cannot eliminate the interference, the FCC requires that you stop using your product. Changes or modifications not expressly approved by RadioShack may cause interference and void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.